

Fabien Guerreiro Licence ouverte Etalab

Liberté Égalité Fraternité

Les Goûters Sigea

Les goûters Sigea

GPS RTK (centimétrique en temps réel)

Vocabulaire, matériel et configuration, saisie de relevés

Fabien Guerreiro Licence ouverte Etalab

Restons sur des choses simples !

Remerciements

OpenLab technum

- Prêt du GNSS RTK initial (Sparfunk + antenne amplifiée monobande)
 - TLab du projet Agro Open : électronique numérique, CAO, activity/all/

DRAAF Bourgogne-Franche-Comté

- Mise à disposition de GNSS RTK (drotek et antenne multibande)
- L'institut Agro Dijon
 - Prêt de tablette et smartphone Android

impression 3D, fraisage numérique, réalisation de prototypes https://www.linkedin.com/in/openlab-technum-a885a8204/recent-

Vocabulaire

GPS

- Global Positioning System
- 1973 1995 (24 satellites) : 100m (civil)
- mai 2000 : 10m
- 2003 : RTK
- 2004 : TomTom GO (automobile)
- 2010 : GPS Smartophone

GNSS

- Global navigation satellite systems
- GPS, Galiléo, GONASS, BeiDou Fréquences différentes
- Segments : Spatial, contrôle et utilisateur
- Position (m), vitesse (cm/s), temps (ns)
- Signal : phase de la (fréquence) porteuse, code PRN/périodique pour la distance, message de navigation (rafraichissement éphémérides, horloge, ionosphère)

Vocabulaire

- DGPS / DGNSS (GPS Diférentiel)
 - SBAS (sans répétabilité)
 - Satellite-based augmentation system Egnos en Europe : satellites géostationnaires (segment spatial) WAAS (Wide Area Augmentation System)
 - LBAS
 - Post-traitement
 - RTK

AGPS / A-GNSS (GPS Assisté)

- Couplage avec des données en ligne
 - LoRa(Wan), Wifi …
 - Téléchargement direct de l'almanach et des éphémérides
 - Signaux difficiles (ex. ville)

Vocabulaire

- RTK (correction de phase)
 - Cinématique temps réel Real Time Kinematic
 - Mesure de la phase des signaux GNSS
 - Position absolue au cm
 - Base RTK
 - Station de référence fixe
 - Corrections en temps réel
 - Rover RTK :
 - Récepteur GNSS RTK
 - Calcul de la position relative à la base (quelques mm)

• Fréquences

<u>2</u>0

. . .

- L1/L2/L5/L6 (Autres lettres selon systèmes de satellites)
 - GPS : L1*/L2*/L5
 - Galiléo : E1*/E5*/E6

Propagation (signal)

- Ionosphère
- Troposphère

Locales (signal)

- Masquage partiel ou total du signal
- Réflexion parasite

Bruits (récepteur)

Mesures du récepteur

GNSS : Diminution des erreurs

4 satellites minimum

- 3 pour la position,
- 1 pour le décalage de l'horloge du récepteur \bullet
- Fréquences multiples (L1 + L2 + L5)
 - Correction des erreurs de la ionosphère (réfraction des signaux GNSS => allongement parcours)
- Géométrie des satellites
 - DOP (affaiblissement de précision) : GDOP, PDOP, HDOP, VDOP, TDOP
 - 1 < DOP < 2 : Excellent
- Position de l'antenne (et de la base !)

Vérifications avant terrain

- Ephémérides
- lonosphère
 - Indice Kp sur 3h < 3 : verrouillage des satellites bons (0,1,2) à correct (3-) <u>https://www.swpc.noaa.gov/products/planetary-k-index/</u>, <u>https://www.spaceweatherlive.com/</u> \bullet
 - Fréquence Critique de la Couche F2 (foF2) < 10MHz http://www.radioamateurs.news.sciencesfrance.fr/?p=141699
 - Indice R95 < 3,5 sur les courtes périodes https://www.reseau-teria.com/activite-ionospherique/
- Troposphère
 - Index Trop Hepburn https://www.dxinfocentre.com/tropo_eur.html

<u>2</u>0

- Pourquoi RTK
 - Données centimétriques à coût raisonnable
- Pourquoi Centipede
 - Gratuit / autonomie
 - Distance base (30 km max !) :
 - une seul base (RTK) : correction d'erreur de précision Connexion à la base via les serveurs NTRIP \Rightarrow Distance à l'antenne très important !

Principe du NRTK : Plusieurs bases interpolation de la correction donc de l'erreur de précision Etude de la chambre d'agriculture de la somme : 20km : +/- 2cm — 30km : +/- 3cm par rapport à Orphéon

Source : https://hautsdefrance.chambre-agriculture.fr - 21/05/24 (2021)

21/05/24 - ODbL v1.0

• Principe

- Matériel nécessaire
 - Un Android connecté Internet**
 - Une App. Client NTRIP
 - Une app. Saisie de données
 - Un récepteur GNSS RTK
 - Une antenne multibande
 - Un câble OTG

** Connection Internet du Smartphone ou de la tablette pour recevoir les corrections de la base RTK (serveur NTRIP : caster.centipede.fr:2121/xxxxx xxxxx : nom de la base la plus proche)

<u>2</u>0

Situation des Bases GNSS Carte Centipede

EPI21

basesrtk

🖌 🔻 Q Mount Point :ASD21 Etat : active Dernière vérification des Coordonnées (GMT): 2024-05-22T14:30:59.000Z

Coordonnées géo RGF93 Latitude: 47.31055 Longitude : 5.0651 Hauteur: 327.646

Format Data:RTCM3 RTCM messages: 1004.1005.1006.1008.1012.1019.1020.1033.1042.1046.1077.1087. Système : GLO+GAL+SBS+BDS+GPS Fréquence : L1-L2

Récepteur : F9P drotek Antenne : drotek DA910 MSG Receiver : RTKBase Ublox_ZED-F9P2.5.0 1.13 MSG Antenne : ADVNULLANTENNA Network: CentipedeRTK Rapport de positionnement: 2_212620a_rd.txt Logs déconnexions: Logs ASD21

Source : https://centipede.fr/ - 22/05/24 - ODbL v1.0

• Principe

<u>https://centipede.fr/</u>

- Zoomer sur la position (position des relevés GNSS)
- Activer l'affichage des tampons
- Choisir l'antenne active la plus proche (dans les 3 zones proches)
- Se connecter au caster : caster.centipede.fr:2121/xxxx** (voir configuration plus loin)

** xxxxx : nom de la base la plus proche

<u>2</u>0

🗸 🔻 Q Mount Point :ASD21 active Etat : Dernière vérification des Coordonnées (GMT): 2024-05-22T14:30:59.000Z

Coordonnées géo RGF93 Latitude: 47.31055 Longitude : 5.0651 Hauteur: 327.646

Format Data:RTCM3 RTCM messages 1006 1008 1012 1019 1020 1033 1042 1046 1077 1087 1097 1107 1127 12 Système : GLO+GAL+SBS+BDS+GPS Fréquence : L1-L2

Récepteur : F9P drotek Antenne : drotek DA910 MSG Receiver : RTKBase Ublox_ZED-F9P2.5.0 1.13 MSG Antenne : ADVNULLANTENNA Network : CentipedeRTK Rapport de positionnement: 2_212620a_rd.txt Logs déconnexions: Logs ASD21

Source : https://centipede.fr/ - 22/05/24 - ODbL v1.0

Fonctionnement simplifié

• Satellite

- Émet un signal composé d'une porteuse à haute fréquence (modulée par des • codes et des données de navigation)
- La porteuse est une onde sinusoïdale continue à une fréquence précise
- La phase d'une onde sinusoïdale est une mesure de la position de l'onde à un instant donné
- Rover
 - La puce GNSS, avec l'antenne multibande, mesure la position du Rover par réception des signaux des satellites (récepteur GNSS classique)
 - Compare la phase de la porteuse reçue à sa référence locale (synchro + suivi)
 - \Rightarrow Mesure de la distance entre satellite et récepteur GNSS, précision au mètre
 - L'Ambiguïté de phase : La phase est connue mais pas le nombre de longueurs d'ondes
- Base
 - Mesure sa propre position à l'aide des satellites
 - Compare sa position calculée à sa position exacte
 - Transmet les corrections au smartphone via Internet (considérant qu'à une • distance < à 30 km, les erreurs sont identiques)
- Rover
 - Applique des techniques de résolution de l'ambiguïté à ses relevés GNSS
 - Détermine le nombre de longueurs d'ondes et en déduit la distance

<u>2</u>0

Source : https://centipede.fr/ - 22/05/24 - ODbL v1.0

Exemple sur la bande L1 du GPS

- Satellite
 - L1 à 1575.42 MHz pour le GPS
 - longueur d'onde 19 cm
 - Ex. pour une phase de 180° :

Une phase de 180° (une demi-longueur d'onde $\lambda/2$) signifie une distance de :

Distance fractionnaire = **φ***λ/360°=19*180/360°=19cm*0.5=9.5cm

(précision subcentimétrique)

- Base
 - Calcule sa position à l'aide des satellites
 - Envoie les corrections au rover ainsi que sa vraie position toutes les secondes
- Rover
 - Résout l'ambiguïté de phase et détermine le nombre de longueurs d'ondes (x*19cm) aux 9,5cm
 - Affichage de la position à 10mm près

Matériel

- récepteur GNSS RTK (ZED-F9P)
 - Modèles ZED-F9P
 - Drotek, Ardusimple, Ublox, Sparfunk ...
 - USB
 - Câble double USB-C OTG
 - Carte GNSS RTK ZED-F9P
 - + Bluetooth
 - Module Bluetooth HC-05
 - Câble USB (+ batterie)
 - Boitier fermé obligatoirement :
 - \Rightarrow Sensibilité au soleil et aux courants d'air
 - Impression boîtier 3D / Ajout Bluetooth

 \Rightarrow Centipede

- Antenne multibande (L1/L2/L5 + SBAS)
- Achat en kit ou complet selon objectifs

<u>2</u>0

Source : https://www.ardusimple.com - 21/05/24

DP0601 RTK GNSS (XL F9P)

Reference 0891B08 Last items in stock €189.90 Tax excluded

🚖 🚖 🚖 🊖 2 Reviews

Delivers centimeter level accuracy in seconds with a high precision Multi-band GNSS module

Source : https://store-drotek.com - 21/05/24

 \bigcirc

Source : https://store-drotek.com - 21/05/24

DA910 multi-band GNSS Antenna

★ 🛧 🛧 🋧 3 Reviews Reference 0910 €99.90 Tax excluded

This antenna provides GPS L1/L2, GLONASS L1/L2, COMPASS B1/B2/B3 and Galileo E1/E5b/E6 coverad

U-blox ANN-MB multi-band GNSS antenna

Reference 0909C01 €52.90 Tax excluded

L'antenne u-blox ANN-MB fournit une solution d'antenne multibande rapide et facile (L1, L2/E5b) pour les applications de haute précision.

DA233 multi-band GNSS Antenna

Reference 0925 €69.90 Tax excluded

Le DA233 est une antenne active GNSS multibande abordable et très efficace.

DA233 multi-band GNSS Antenna provides multi-band GPS coverage: L1/L2, GLONASS G1/G2, BEIDOU B1/B2/B3 and Galileo E1/E5b/E6 and allow a faster initialization by improving the number of satellites available.

Matériel

Smartphone ou tablette Android OTG

- Apps testées
 - SW MAPS, GNSS Master, **RTKGPS+ (opensource), Qfield, ArcGIS Field Maps**

Apps supplémentaires testées

Client (Lefebrure)

<u>2</u>0

 Applications de positions de sorties récepteurs RTK (format NMEA) • SurvX, Surpad, Lefébure, SW Maps, Mapit GIS, Field Navigator, AgriBus Professional, FieldBee, PinPoint GIS, Field Maps, Google Maps, QField, LocusGIS, Mobile Topographer, Kizeo Forms, ODK Collect, MicroSurvey, FieldGenius, Aplitop TcpGPS, application OCAD Sketch, X-Survey

> rtk OTG **GPSTest** Mergin Maps KGPS-Checker GNSS Master SW Maps QField NTRIP Client

Source : https://fr.ardusimple.com - 21/05/24

NTRIP USB, USB OTG Checker, GPSTest, Mergin Maps, NTRIP

GNSS RTK F9P

- Firmware
 - https://content.u-blox.com/sites/default/files/2022-05/UBX F9 100 HPG132.df73486d99374142f3aabf79b7178f48.bin
 - U-center (Windows uniquement)
- Configuration RTKlib
 - SW Maps / RTKGPS+ / Lefebrure
 - 800ms GPS-GLO-GAL-BEI Lefebure-SWMaps-RTKGP%2B.txt

Configuration Bluetooth HC-05

=> https://docs.centipede.fr/docs/make rover/configuration.html

• Vérifier sur le site marchant si le récepteur est livré paramétré (si non : précision 4,9m)

https://docs.centipede.fr/assets/param rtklib/F9P HPG1-32 Rover USB UART1-115200Bd FREQ-

P COM5 @ 9600 - u-center 24.02	
File Edit View Player Receiver	Tools Window Help
D 🖬 📽 🗸 🕼 🔯 🕹 🖬 🖬	Firmware Update Ctrl+U 🛐 🗊 🖛 🔀 🖛 🖛 🖛 🖬 🐼 🗌
	Legacy Firmware Update
2 Disconnect	Dump Receiver Diagnostics
2	u-blox 7/8/M8 Retrieve Log
COMI	AssistNow Offline >
COM5	Assistivow Unline >
· <u>comb</u> 1	Receiver Configuration
Network connection	Hotkeys
Location API	Preferences
Sensor API	
Universal Gnss Driver (Win 10)	
	Firmware Update Utility
	Firmware image
	D:\Fabien\Logiciels\GPS\UBX_F9_100_HPG132.df73486d9937414 Program FIS only
	Flash Information Structure (FIS) file / Flash Definiton File (FDF)
	Use this baudrate for update
	9600 Send training sequence
	Use chip erase
	Transfer image to RAM
	Additional options
	Command line
	"D:\Fabien\Logiciels\GPS\UBX_F9_100_HPG132.df73486d99374142f3aabf79b7178f48.bin"
1	
1 N.	

<u>2</u>0

No file open

NMEA 00:11:03 08:05:32 @

GNSS RTK F9P

• Firmware

Version U-Center :

Si la mise à jour n'aboutit pas, choisir la dernière version de U-Center sur le site officiel (ublox.com)

Pour les u-blox M10 et F10 télécharger u-Center2

GNSS RTK F9P

- Configuration RTKlib (SWMAPS ...)
 - Aller dans *Tools > Receiver Configuration*
 - Sélectionner *u-blox Generation 9*
 - Sélectionner le fichier précédemment téléchargé
 - Cliquer sur *Transfert file -> GNSS* et attendre que le transfert se réalise

Par mesure de prudence, s'assurer que la configuration est bien enregistrée :

- Cliquer sur *View > Configuration View*
- Cliquer sur *CFG* (Configuration)
- Cliquer sur *Send*
- Cliquer sur *Disconnect*
 - Débrancher le récepteur

Données en sortie du récepteur en NMEA, le récepteur est entièrement fonctionnel en USB

Source : https://docs.centipede.fr/docs/make_rover/configuration.html - 21/05/24 - ODbL v1.0

Android

- Développeur
 - Paramètres (-> Système) -> À propos du téléphone -> Numéro de build
 - Nouveau menu dans Système -> Options pour développeurs
- Connexions OTG
- Localisation fictive
 - Sélectionner l'application de localisation fictive : SW MAPS
- Wifi
 - Options de localisation : décocher l'amélioration Wifi
 - Options google de localisation : décocher Wifi

Iphone (testé partiellement)

- Application client NTRIP
 - SWMAPS en Bluetooth uniquement
- Application de saisie de données
 - SWMAPS, ArcGIS Field Maps, Mergin Maps, QField

• SW Maps

- de l'App.)
- Pourquoi SW Maps : Client NTRIP et outil de relevé
- Permettre à SWMAPS de fonctionner en arrière plan
- Autoriser SWMAPS à accéder au périphérique USB
- Brancher le GNSS RTK en USB-C au Smartphone
- SWMAPS indique une position fictive
- Télécharger le fichier le fichier Géoide RAF20 Le placer dans le dossier « SW Maps Root Folder » https://www-iuem.univ-brest.fr/pops/documents/1634
- \Rightarrow Évite les transformations pour l'altitude

• SW Maps

- Dans le menu (en haut à gauche) :
 - choisir USB Serial GNSS, le device apparaît,
 - choisir le type d'instrument model avec la petite flèche : u-blox RTK ou SparkFun RTK, cliquer sur *connect* (précision 1 à 3 m)
- Dans le menu, un nouveau menu apparaît :
 - NTRIP connection, paramétrer :
 - caster.centipede.fr:2101/ASD21**, cocher Send INMEA to NTRIP, cliquer sur connect
- Dans le menu GNSS statut
 - Vérifier la précision horizontale à 10 mm
 - Temps de traitement à prendre en compte au début de quelques minutes

SWMAPS permet la saisie de donnée \Rightarrow Autre application activer la localisation du smartphone

** Changer le nom de l'antenne en fonction de la plus proche

Configuration : Vérification

SW Maps

- Nombre de satellites
 - Minimum 4
- Géométrie : PDOP, HDOP, VDOP
 - Maximum 2
- Type de correction
 - RTK Fix obligatoirement
- Erreur de précision
 - ~10mm
- Si l'erreur de précision reste « figée » sur une valeur élevée ex.2,9m / 4,9m : Configuration récepteur incomplète ⇒ Recommencer configuration du récepteur (firmware + configuration)

 \Box

 \equiv

 \triangleleft

Mesures de terrain

SWM Maps

- Cliquer sur le point à enregistrer
- Lancer la moyenne des points (averaging) – relancer à chaque mesure
- Vérifier le Fix Type : RTK Fix
- Enregistrer (vibration du Smartphone)
- Exporter les données depuis le menu
- Récupérer des données
- Vidéo Centipede + SWMaps :
 - https://www.youtube.com/wat ch?v=VX5kw8pClpg

<u>2</u>0

-

 \equiv

 \Box

 \triangleleft

Paramétrages supplémentaires

QGIS / QField

- Créer un projet sous QGIS
- Préparer le projet (extension *Qfield Sync*) avant transfert sur smartphone • Récupérer des données (mesures de terrain)
- - \Mémoire de stockage interne\Android\data\ch.opengis.qfield\files\Imported Projects
- GNSS Master, RTKGPS+ ...
 - Configuration identique à SW Maps
 - Variantes mineures :
 - GNSS Master : Cocher « Mock location » lorsque l'option est présente dans l'App RTKGPS+ : Format du récepteur (u-blox RTK -> u-blox LEA-*T …)

 - RTKGPS+ : Télécharger settings.zip (sur Centipede) et le déposer dans le dossier RtkGPS (créé après un premier lancement à vide de l'App.)

Crédits

Ressources consultées le 27/06/2024 :

GPS RTK

- <u>https://centipede.fr</u>
- <u>https://www.gps.gov</u>
- <u>https://fr.wikipedia.org</u>
- <u>https://hautsdefrance.chambre-agriculture.fr</u>

Matériel

- <u>https://www.u-blox.com</u>
- <u>https://store-drotek.com</u>
- <u>https://fr.ardusimple.com</u>
- <u>https://www.sparkfun.com</u>

Applicatifs

- <u>https://aviyaantech.com/swmaps</u>
- <u>https://www.gnssmaster.com</u>
- <u>https://github.com/jancelin/RtkGps/releases</u>
- <u>https://play.google.com</u>

lonosphère/troposphère

- <u>https://www.swpc.noaa.gov</u>
- <u>https://www.spaceweatherlive.com</u>
- <u>http://www.radioamateurs.news.sciencesfrance.fr</u>
- <u>https://www.reseau-teria.com/activite-ionospherique</u>
- <u>https://www.dxinfocentre</u>.com/tropo_eur.html

<u>2</u>0

Le 90 8

